Fiber Optic Mechanical Splice

A mechanical splice is a junction of two or more optical fibers that are aligned and held in place by a self-contained assembly (usually the size of a large carpenter’s nail). The fibers are not permanently joined, just precisely held together so that light can pass from one to another.

Tools that are used in Fiber Optic Mechanical Splice are:

Fiber Optic Mechanical Splice Tools

Mechanical splicing involves using mechanical fixtures to align and connect optical fibers. Mechanical splicing methods may involve either passive or active core alignment. Active core alignment produces a lower loss splice than passive alignment. However, passive core alignment methods can produce mechanical splices with acceptable loss measurements even with single mode fibers.

In the strictest sense, a mechanical splice is a permanent connection made between two optical fibers. Mechanical splices hold the two optical fibers in alignment for an indefinite period of time without movement. The amount of splice loss is stable over time and unaffected by changes in environmental or mechanical conditions.

Fiber Optic Mechanical SpliceIf high splice loss results from assembling some mechanical splices, the splice can be reopened and the fibers realigned. Realignment includes wiping the fiber or ferrule end with a soft wipe, reinserting the fiber or ferrule in a new arrangement, and adding new refractive index material. Once producing an acceptable mechanical splice, splice realignment should be unnecessary because most mechanical splices are environmentally and mechanically stable within their intended application.

The types of mechanical splices that exist for mechanical splicing include glass, plastic, metal, and ceramic tubes; and V-groove and rotary devices. Materials that assist mechanical splices in splicing fibers include transparent adhesives and index matching gels. Transparent adhesives are epoxy resins that seal mechanical splices and provide index matching between the connected fibers.

Mechanical Splice of Fiber Optics with splice sleevs